A non-sequence-specific requirement for SMN protein activity: the role of aminoglycosides in inducing elevated SMN protein levels.

نویسندگان

  • Elizabeth C Wolstencroft
  • Virginia Mattis
  • Anna A Bajer
  • Philip J Young
  • Christian L Lorson
چکیده

Spinal muscular atrophy (SMA) is caused by homozygous loss of the survival motor neuron (SMN1) gene. In virtually all SMA patients, a nearly identical copy gene is present, SMN2. SMN2 cannot fully compensate for the loss of SMN1 because the majority of transcripts derived from SMN2 lack a critical exon (exon 7), resulting in a dysfunctional SMN protein. Therefore, the critical distinction between a functional and a dysfunctional SMN protein is the inclusion or the exclusion of the exon 7 encoded peptide. To determine the role of the 16 amino acids encoded by SMN exon 7, a panel of synthetic mutations were transiently expressed in SMA patient fibroblasts and HeLa cells. Consistent with previous reports, the protein encoded by SMN exons 1-6 was primarily restricted to the nucleus. However, a variety of heterologous sequences fused to the C-terminus of SMN exons 1-6 allowed mutant SMN proteins to properly distribute to the cytoplasm and to the nuclear gems. These data demonstrate that the SMN exon 7 sequence is not specifically required, rather this region functions as a non-specific 'tail' that facilitates proper localization. Therefore, a possible means to restore additional activity to the SMNDelta7 protein could be to induce a longer C-terminus by suppressing recognition of the native stop codon. To address this possibility, aminoglycosides were examined for their ability to restore detectable levels of SMN protein in SMA patient fibroblasts. Aminoglycosides can suppress the accurate identification of translation termination codons in eukaryotic cells. Consistent with this, treatment of SMA patient fibroblasts with tobramycin and amikacin resulted in a quantitative increase in SMN-positive gems and an overall increase in detectable SMN protein. Taken together, this work describes the role of the critical exon 7 region and identifies a possible alternative approach for therapeutic intervention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequence-specific interaction of U1 snRNA with the SMN complex.

The survival of motor neurons (SMN) protein complex functions in the biogenesis of spliceosomal small nuclear ribonucleoprotein particles (snRNPs) and prob ably other RNPs. All spliceosomal snRNPs have a common core of seven Sm proteins. To mediate the assembly of snRNPs, the SMN complex must be able to bring together Sm proteins with U snRNAs. We showed previously that SMN and other components...

متن کامل

Transcriptional enhancement of Smn levels in motoneurons is crucial for proper axon morphology in zebrafish

An unresolved mystery in the field of spinal muscular atrophy (SMA) is why a reduction of the ubiquitously expressed Smn protein causes defects mostly in motoneurons. We addressed the possibility that this restricted vulnerability stems from elevated Smn expression in motoneurons. To explore this, we established an ex vivo zebrafish culture system of GFP-marked motoneurons to quantitatively mea...

متن کامل

Molecular functions of the SMN complex.

The SMN complex is essential for the biogenesis of spliceosomal small nuclear ribonucleoproteins and likely functions in the assembly, metabolism, and transport of a diverse number of other ribonucleoproteins. Specifically, the SMN complex assembles 7 Sm proteins into a core structure around a highly conserved sequence of ribonucleic acid (RNA) found in small nuclear RNAs. The complex recognize...

متن کامل

P-35: Celecoxiband Silymarin Ameliorated The Varicocele-Induced Inflammation and Oxidative Stress; Evidence for CoxII,iNOS and Enzymatic Antioxidant Status

Background: Varicocele (VCL) exerts its impact via enhancing inflammation and down-regulating testicular endocrine and antioxidant statuses. Celecoxib (CCB) is a non-steroidal anti-inflammatory drug (NSAID), which its effects based on the inhibition of cyclooxygenase (COX) enzymes. On the hand, silymarin (SMN) is known for its remarkable anti-oxidative impact. Therefore, present study was desig...

متن کامل

The catalytically inactive tyrosine phosphatase HD-PTP/PTPN23 is a novel regulator of SMN complex localization

The survival motor neuron (SMN) complex fulfils essential functions in the assembly of snRNPs, which are key components in the splicing of pre-mRNAs. Little is known about the regulation of SMN complex activity by posttranslational modification despite its complicated phosphorylation pattern. Several phosphatases had been implicated in the regulation of SMN, including the nuclear phosphatases P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 14 9  شماره 

صفحات  -

تاریخ انتشار 2005